Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.666
Filtrar
1.
An Acad Bras Cienc ; 96(2): e20230559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747788

RESUMEN

Creatine is consumed by athletes to increase strength and gain muscle. The aim of this study was to evaluate the effects of creatine supplementation on maximal strength and strength endurance. Twelve strength-trained men (25.2 ± 3.4 years) supplemented with 20 g Creatina + 10g maltodextrin or placebo (20g starch + 10g maltodextrin) for five days in randomized order. Maximal strength and strength endurance (4 sets 70% 1RM until concentric failure) were determined in the bench press. In addition, blood lactate, rate of perceived effort, fatigue index, and mood state were evaluated. All measurements were performed before and after the supplementation period. There were no significant changing in maximal strength, blood lactate, RPE, fatigue index, and mood state in either treatment. However, the creatine group performed more repetitions after the supplementation (Cr: Δ = +3.4 reps, p = 0.036, g = 0.53; PLA: Δ = +0.3reps, p = 0.414, g = 0.06), and higher total work (Cr: Δ = +199.5au, p = 0.038, g = 0.52; PLA: Δ = +26.7au, p = 0.402, g = 0.07). Creatine loading for five days allowed the subjects to perform more repetitions, resulting in greater total work, but failed to change the maximum strength.


Asunto(s)
Creatina , Suplementos Dietéticos , Ácido Láctico , Fuerza Muscular , Resistencia Física , Humanos , Masculino , Adulto , Creatina/administración & dosificación , Creatina/farmacología , Creatina/sangre , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/fisiología , Resistencia Física/efectos de los fármacos , Resistencia Física/fisiología , Ácido Láctico/sangre , Adulto Joven , Entrenamiento de Fuerza/métodos , Fatiga Muscular/efectos de los fármacos , Fatiga Muscular/fisiología , Método Doble Ciego
2.
Nutrients ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732600

RESUMEN

BACKGROUND: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). METHOD: The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides-LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. RESULTS: Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. CONCLUSIONS: The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM.


Asunto(s)
Estudios Cruzados , Jugos de Frutas y Vegetales , Interleucina-6 , Receptores de Lipopolisacáridos , Malus , Carrera de Maratón , Resistencia Física , Polifenoles , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Polifenoles/farmacología , Polifenoles/administración & dosificación , Resistencia Física/efectos de los fármacos , Resistencia Física/fisiología , Interleucina-6/sangre , Receptores de Lipopolisacáridos/sangre , Carrera de Maratón/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Lipopolisacáridos/sangre , Proteínas de Unión a Ácidos Grasos/sangre , Carrera/fisiología , Adulto Joven
3.
Nutrients ; 16(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38674836

RESUMEN

This study aimed to explore the effects of acute ingestion of caffeine capsules on muscle strength and muscle endurance. We searched the PubMed, Web of Science, Cochrane, Scopus, and EBSCO databases. Data were pooled using the weighted mean difference (WMD) and 95% confidence interval. Fourteen studies fulfilled the inclusion criteria. The acute ingestion of caffeine capsules significantly improved muscle strength (WMD, 7.09, p < 0.00001) and muscle endurance (WMD, 1.37; p < 0.00001), especially in males (muscle strength, WMD, 7.59, p < 0.00001; muscle endurance, WMD, 1.40, p < 0.00001). Subgroup analyses showed that ≥ 6 mg/kg body weight of caffeine (WMD, 6.35, p < 0.00001) and ingesting caffeine 45 min pre-exercise (WMD, 8.61, p < 0.00001) were more effective in improving muscle strength, with the acute ingestion of caffeine capsules having a greater effect on lower body muscle strength (WMD, 10.19, p < 0.00001). In addition, the acute ingestion of caffeine capsules had a greater effect in moderate-intensity muscle endurance tests (WMD, 1.76, p < 0.00001). An acute ingestion of caffeine capsules significantly improved muscle strength and muscle endurance in the upper body and lower body of males.


Asunto(s)
Cafeína , Cápsulas , Fuerza Muscular , Resistencia Física , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Cafeína/administración & dosificación , Cafeína/farmacología , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Resistencia Física/efectos de los fármacos
4.
Scand J Med Sci Sports ; 34(4): e14629, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646853

RESUMEN

BACKGROUND: Athletes commonly use creatine, caffeine, and sodium bicarbonate for performance enhancement. While their isolated effects are well-described, less is known about their potential additive effects. METHODS: Following a baseline trial, we randomized 12 endurance-trained males (age: 25 ± 5 years, VO2max: 56.7 ± 4.6 mL kg-1 min-1; mean ± SD) and 11 females (age: 25 ± 3 years, VO2max: 50.2 ± 3.4 mL kg-1 min-1) to 5 days of creatine monohydrate (0.3 g kg-1 per day) or placebo loading, followed by a daily maintenance dose (0.04 g kg-1) throughout the study. After the loading period, subjects completed four trials in randomized order where they ingested caffeine (3 mg kg-1), sodium bicarbonate (0.3 g kg-1), placebo, or both caffeine and sodium bicarbonate before a maximal voluntary contraction (MVC), 15-s sprint, and 6-min time trial. RESULTS: Compared to placebo, mean power output during 15-s sprint was higher following loading with creatine than placebo (+34 W, 95% CI: 10 to 58, p = 0.008), but with no additional effect of caffeine (+10 W, 95% CI: -7 to 24, p = 0.156) or sodium bicarbonate (+5 W, 95% CI: -4 to 13, p = 0.397). Mean power output during 6-min time trial was higher with caffeine (+12 W, 95% CI: 5 to 18, p = 0.001) and caffeine + sodium bicarbonate (+8 W, 95% CI: 0 to 15, p = 0.038), whereas sodium bicarbonate (-1 W, 95% CI: -7 to 6, p = 0.851) and creatine (-6 W, 95% CI: -15 to 4, p = 0.250) had no effects. CONCLUSION: While creatine and caffeine can enhance sprint- and time trial performance, respectively, these effects do not seem additive. Therefore, supplementing with either creatine or caffeine appears sufficient to enhance sprint or short intense exercise performance.


Asunto(s)
Rendimiento Atlético , Cafeína , Creatina , Sustancias para Mejorar el Rendimiento , Bicarbonato de Sodio , Humanos , Cafeína/farmacología , Cafeína/administración & dosificación , Bicarbonato de Sodio/administración & dosificación , Bicarbonato de Sodio/farmacología , Masculino , Creatina/administración & dosificación , Creatina/farmacología , Adulto , Femenino , Adulto Joven , Sustancias para Mejorar el Rendimiento/administración & dosificación , Sustancias para Mejorar el Rendimiento/farmacología , Rendimiento Atlético/fisiología , Resistencia Física/efectos de los fármacos , Entrenamiento Aeróbico , Método Doble Ciego , Consumo de Oxígeno/efectos de los fármacos
5.
Eur J Nutr ; 62(8): 3411-3422, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37665425

RESUMEN

PURPOSE: This study aimed to evaluate the capacity of peppermint essential oil to improve the physical performance of runners in running protocol until exhaustion. METHODS: In a clinical, randomized, double-blind, cross-over and controlled study, fourteen male recreational runners (37.1 ± 2.0 years; 24 ± 1.1 kg/m2; 53.1 ± 1.7 mL kg min) performed two runs to exhaustion at 70% of VO2max, after intake of 500 mL of water added with 0.05 mL of peppermint essential oil (PEO) or placebo (PLA), plus 400 mL of the drink during the initial part of the exercise. Records were made of body temperature (BT), thermal sensation (TS), thermal comfort (TC), subjective perception of effort (SPE), sweat rate (SR), and urine volume and density. RESULTS: Time to exhaustion was 109.9 ± 6.9 min in PEO and 98.5 ± 6.2 min in PLA (p = 0.009; effect size: 0.826). No significant changes were observed in the values of BT, TS, TC, SPE, SR, lost body mass, and urine volume and density (p > 0.05). CONCLUSION: Peppermint essential oil added to water before and during a race significantly increases the time to exhaustion of recreational runners but without altering BT, TS, TC, or hydration status, so the mechanisms involved were not clarified in this study. BRAZILIAN REGISTRY OF CLINICAL TRIALS (REBEC): RBR-75zt25z.


Asunto(s)
Mentha piperita , Aceites Volátiles , Resistencia Física , Carrera , Ejercicio Físico , Mentha piperita/química , Aceites Volátiles/administración & dosificación , Agua , Humanos , Masculino , Resistencia Física/efectos de los fármacos , Adulto
6.
Int J Biol Macromol ; 241: 124611, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37119895

RESUMEN

Fatigue is a common physiological response that is closely related to energy metabolism. Polysaccharides, as excellent dietary supplements, have been proven to have a variety of pharmacological activities. In this study, A 23.007 kDa polysaccharide from Armillaria gallica (AGP) was purified and performed structural characterization, including analysis of homogeneity, molecular weight and monosaccharide composition. Methylation analysis is used to analyze the glycosidic bond composition of AGP. The mouse model of acute fatigue was used to evaluate the anti-fatigue effect of AGP. AGP-treatment improved exercise endurance in mice and reduced fatigue symptoms caused by acute exercise. AGP regulated the levels of adenosine triphosphate, lactic acid, blood urea nitrogen and lactate dehydrogenase, muscle glycogen and liver glycogen of acute fatigue mice. AGP affected the composition of intestinal microbiota, the changes of some intestinal microorganisms are correlated with fatigue and oxidative stress indicators. Meanwhile, AGP reduced oxidative stress levels, increased antioxidant enzyme activity and regulated the AMP-dependent protein kinase/nuclear factor erythroid 2-related factor 2 signaling pathway. AGP exerted an anti-fatigue effect through modulation of oxidative stress, which is related to intestinal microbiota.


Asunto(s)
Armillaria , Cuerpos Fructíferos de los Hongos , Fatiga Muscular , Resistencia Física , Polisacáridos , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Armillaria/química , Peso Corporal/efectos de los fármacos , Cuerpos Fructíferos de los Hongos/química , Microbioma Gastrointestinal/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Fatiga Muscular/fisiología , Estrés Oxidativo/efectos de los fármacos , Condicionamiento Físico Animal/fisiología , Resistencia Física/efectos de los fármacos , Resistencia Física/fisiología , Polisacáridos/efectos adversos , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología
7.
Nutrients ; 14(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35057416

RESUMEN

The aim of this study was to evaluate the effects of sodium phosphate (SP) supplementation on aerobic capacity in hypoxia. Twenty-four trained male cyclists received SP (50 mg·kg-1 of FFM/day) or placebo for six days in a randomized, crossover study, with a three-week washout period between supplementation phases. Before and after each supplementation phase, the subjects performed an incremental exercise test to exhaustion in hypoxia (FiO2 = 16%). Additionally, the levels of 2,3-diphosphoglycerate (2,3-DPG), hypoxia-inducible factor 1 alpha (HIF-1α), inorganic phosphate (Pi), calcium (Ca), parathyroid hormone (PTH) and acid-base balance were determined. The results showed that phosphate loading significantly increased the Pi level by 9.0%, whereas 2,3-DPG levels, hemoglobin oxygen affinity, buffering capacity and myocardial efficiency remained unchanged. The aerobic capacity in hypoxia was not improved following SP. Additionally, our data revealed high inter-individual variability in response to SP. Therefore, the participants were grouped as Responders and Non-Responders. In the Responders, a significant increase in aerobic performance in the range of 3-5% was observed. In conclusion, SP supplementation is not an ergogenic aid for aerobic capacity in hypoxia. However, in certain individuals, some benefits can be expected, but mainly in athletes with less training-induced central and/or peripheral adaptation.


Asunto(s)
Ciclismo/fisiología , Suplementos Dietéticos , Tolerancia al Ejercicio/efectos de los fármacos , Hipoxia/fisiopatología , Sustancias para Mejorar el Rendimiento/administración & dosificación , Fosfatos/administración & dosificación , Adulto , Rendimiento Atlético/fisiología , Estudios Cruzados , Prueba de Esfuerzo , Humanos , Hipoxia/terapia , Masculino , Consumo de Oxígeno/efectos de los fármacos , Fosfatos/sangre , Resistencia Física/efectos de los fármacos
8.
PLoS One ; 17(1): e0262906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35085328

RESUMEN

Diet and exercise can alter the gut microbiota, but recent studies have assessed the impact of athletic competition on gut microbiota and host metabolites. We designed an open-label pilot study to investigate the effects of both official competition and a multi-strain lactic acid bacteria-fermented soymilk extract (LEX) on the gut microbiota in Japanese college endurance athletes. The analysis of fecal 16S rRNA metagenome and urinary metabolites was used to identify changes in gut microbiota composition and host metabolism. When the fecal microbiota were investigated before and after a race without using of a supplement (pre-observation period), there was an increase in the phylum Firmicutes and decrease in Bacteroidetes. However, no changes in these phyla were seen before and after a race in those who consumed LEX. Before and after LEX ingestion, changes in urinary metabolites included a significant reduction in yeast and fungal markers, neurotransmitters, and mitochondrial metabolites including the TCA cycle. There were several correlations between urinary metabolites and the composition of fecal microbiota. For example, the level of tricarballylic acid was positively correlated with the composition ratio of phylum Firmicutes (Pearson's r = 0.66; p < 0.01). The bacterial species Parabacteroides distasonis was also found to correlate moderately with several urinary metabolites. These findings suggest two possibilities. First, endurance athletes experience significant fluctuations in gut microbiota after a single competition. Second, LEX ingestion may improve yeast and fungal overgrowth in the gastrointestinal tract and enhancing mitochondrial metabolic function.


Asunto(s)
Atletas , Mezclas Complejas/administración & dosificación , Bebidas Fermentadas , Microbioma Gastrointestinal , Glycine max , Lactobacillales , Resistencia Física/efectos de los fármacos , Adulto , Biomarcadores/orina , Femenino , Humanos , Masculino , Proyectos Piloto
9.
Nutrients ; 13(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34959776

RESUMEN

Carbohydrate (CHO) supplementation during prolonged exercise postpones fatigue. However, the optimum administration timing, dosage, type of CHO intake, and possible interaction of the ergogenic effect with athletes' cardiorespiratory fitness (CRF) are not clear. Ninety-six studies (from relevant databases based on predefined eligibility criteria) were selected for meta-analysis to investigate the acute effect of ≤20% CHO solutions on prolonged exercise performance. The between-subject standardized mean difference [SMD = ([mean post-value treatment group-mean post-value control group]/pooled variance)] was assessed. Overall, SMD [95% CI] of 0.43 [0.35, 0.51] was significant (p < 0.001). Subgroup analysis showed that SMD was reduced as the subjects' CRF level increased, with a 6-8% CHO solution composed of GL:FRU improving performance (exercise: 1-4 h); administration during the event led to a superior performance compared to administration before the exercise, with a 6-8% single-source CHO solution increasing performance in intermittent and 'stop and start' sports and an ~6% CHO solution appearing beneficial for 45-60 min exercises, but there were no significant differences between subjects' gender and age groups, varied CHO concentrations, doses, or types in the effect measurement. The evidence found was sound enough to support the hypothesis that CHO solutions, when ingested during endurance exercise, have ergogenic action and a possible crossover interaction with the subject's CRF.


Asunto(s)
Rendimiento Atlético/fisiología , Capacidad Cardiovascular/fisiología , Carbohidratos de la Dieta/administración & dosificación , Sustancias para Mejorar el Rendimiento/administración & dosificación , Resistencia Física/efectos de los fármacos , Adulto , Femenino , Humanos , Masculino , Soluciones , Factores de Tiempo
10.
Nutrients ; 13(12)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34959851

RESUMEN

This article focuses on how nutrition may help prevent and/or assist with recovery from the harmful effects of strenuous acute exercise and physical training (decreased immunity, organ injury, inflammation, oxidative stress, and fatigue), with a focus on nutritional supplements. First, the effects of ketogenic diets on metabolism and inflammation are considered. Second, the effects of various supplements on immune function are discussed, including antioxidant defense modulators (vitamin C, sulforaphane, taheebo), and inflammation reducers (colostrum and hyperimmunized milk). Third, how 3-hydroxy-3-methyl butyrate monohydrate (HMB) may offset muscle damage is reviewed. Fourth and finally, the relationship between exercise, nutrition and COVID-19 infection is briefly mentioned. While additional verification of the safety and efficacy of these supplements is still necessary, current evidence suggests that these supplements have potential applications for health promotion and disease prevention among athletes and more diverse populations.


Asunto(s)
Antioxidantes/uso terapéutico , Atletas , Suplementos Dietéticos , Ejercicio Físico/inmunología , Estrés Oxidativo , Resistencia Física , COVID-19/epidemiología , COVID-19/inmunología , Humanos , Inflamación/epidemiología , Inflamación/inmunología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/inmunología , Resistencia Física/efectos de los fármacos , Resistencia Física/inmunología , SARS-CoV-2/inmunología , Ciencias de la Nutrición y del Deporte
11.
Nutrients ; 13(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836058

RESUMEN

Caffeine mouth rinsing (CMR) has been shown to enhance exercise performance. However, no studies have analyzed the effects of different dosages of CMR on muscular performance. Therefore, the purpose of this study was to examine the effects of different dosages of CMR on strength (bench press 1 repetition maximum (1-RM)) and muscular endurance (60% of 1-RM repetitions to failure) in resistance-trained males. Fourteen resistance-trained males (age: 23 ± 2 years, height: 179 ± 3 cm, body mass: 83 ± 4 kg, BMI: 17 ± 2 kg/m2) completed four conditions in random order. The four conditions consisted of a mouth rinse with 25 mL solutions containing either 1% (250 mg) of CMR (low dose of CMR: LCMR), 2% (500 mg) of CMR (moderate dose of CMR: MCMR), 3% (750 mg) of CMR (high dose of CMR: HCMR) and sweetened water (placebo: PLA) for 5 s prior to a bench press strength and muscular endurance test. Maximal strength, muscular endurance, heart rate (HR) and ratings of perceived exertion (RPE) were recorded for each condition. There were no significant differences in strength (p = 0.30) and HR (p = 0.83) between conditions. HCMR significantly increased muscular endurance performance (p = 0.01) and decreased RPE values (p = 0.01). In conclusion, CMR did not affect bench press 1-RM strength performance, but muscular endurance responses to CMR seems to be dose-dependent.


Asunto(s)
Cafeína/administración & dosificación , Antisépticos Bucales/administración & dosificación , Rendimiento Físico Funcional , Entrenamiento de Fuerza , Adulto , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Voluntarios Sanos , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Fuerza Muscular/efectos de los fármacos , Resistencia Física/efectos de los fármacos , Esfuerzo Físico/efectos de los fármacos , Adulto Joven
12.
Nutrients ; 13(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34836255

RESUMEN

Bioactive peptides are physiologically active peptides mostly derived from proteins following gastrointestinal digestion, fermentation or hydrolysis by proteolytic enzymes. It has been shown that bioactive peptides can be resorbed in their intact form and have repeatedly been shown to have a positive effect on health-related parameters such as hypertension, dyslipoproteinemia, inflammation and oxidative stress. In recent years, there has been increasing evidence that biologically active peptides could also play an important role in sports nutrition. Current studies have shown that bioactive peptides could have a positive impact on changes in body composition and muscular performance, reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. In the following overview, potential mechanisms as well as possible limitations regarding the sports-related effect of bioactive peptides and their potential mechanisms are presented and discussed. In addition, practical applications will be discussed on how bioactive peptides can be integrated into a nutritional approach in sports to enhance athletic performance as well as prevent injuries and improve the rehabilitation process.


Asunto(s)
Péptidos/farmacología , Ciencias de la Nutrición y del Deporte , Rendimiento Atlético/fisiología , Composición Corporal/efectos de los fármacos , Tejido Conectivo/efectos de los fármacos , Ejercicio Físico/fisiología , Humanos , Inflamación , Músculos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Resistencia Física/efectos de los fármacos , Proteínas , Deportes
13.
Am J Physiol Endocrinol Metab ; 321(6): E802-E820, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747202

RESUMEN

Sprint interval training (SIT) is a time-efficient alternative to endurance exercise, conferring beneficial skeletal muscle metabolic adaptations. Current literature has investigated the nutritional regulation of acute and chronic exercise-induced metabolic adaptations in muscle following endurance exercise, principally comparing the impact of training in fasted and carbohydrate-fed (CHO) conditions. Alternative strategies such as exercising in low CHO, protein-fed conditions remain poorly characterized, specifically pertaining to adaptations associated with SIT. Thus, this study aimed to compare the metabolic and performance adaptations to acute and short-term SIT in the fasted state with preexercise hydrolyzed (WPH) or concentrated (WPC) whey protein supplementation. In healthy males, preexercise protein ingestion did not alter exercise-induced increases in PGC-1α, PDK4, SIRT1, and PPAR-δ mRNA expression following acute SIT. However, supplementation of WPH beneficially altered acute exercise-induced CD36 mRNA expression. Preexercise protein ingestion attenuated acute exercise-induced increases in muscle pan-acetylation and PARP1 protein content compared with fasted SIT. Acute serum metabolomic differences confirmed greater preexercise amino acid delivery in protein-fed compared with fasted conditions. Following 3 wk of SIT, training-induced increases in mitochondrial enzymatic activity and exercise performance were similar across nutritional groups. Interestingly, resting muscle acetylation status was downregulated in WPH conditions following training. Such findings suggest preexercise WPC and WPH ingestion positively influences metabolic adaptations to SIT compared with fasted training, resulting in either similar or enhanced performance adaptations. Future studies investigating nutritional modulation of metabolic adaptations to exercise are warranted to build upon these novel findings.NEW & NOTEWORTHY These are the first data to show the influence of preexercise protein on serum and skeletal muscle metabolic adaptations to acute and short-term sprint interval training (SIT). Preexercise whey protein concentrate (WPC) or hydrolysate (WPH) feeding acutely affected the serum metabolome, which differentially influenced acute and chronic changes in mitochondrial gene expression, intracellular signaling (acetylation and PARylation) resulting in either similar or enhanced performance outcomes when compared with fasted training.


Asunto(s)
Adaptación Fisiológica , Ayuno/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Resistencia Física , Proteína de Suero de Leche/farmacología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Adolescente , Adulto , Análisis Químico de la Sangre , Suplementos Dietéticos , Método Doble Ciego , Entrenamiento de Intervalos de Alta Intensidad/métodos , Humanos , Masculino , Metaboloma/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Resistencia Física/efectos de los fármacos , Resistencia Física/genética , Carrera , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcriptoma/efectos de los fármacos , Proteína de Suero de Leche/administración & dosificación , Adulto Joven
14.
Nutrients ; 13(10)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34684557

RESUMEN

The main aim of this study was to evaluate the effects of six days of tri-sodium phosphate (SP) supplementation on the cardiorespiratory system and gross efficiency (GE) during exercise under hypoxia in cyclists. Twenty trained male cyclists received SP (50 mg·kg-1 of fat-free mass/day) or placebo for six days in a randomized, cross-over study, with a three-week washout period between supplementation phases. Before and after each supplementation phase, the subjects performed an incremental exercise test to exhaustion under normobaric hypoxia (FiO2 = 16%, ~2500 m). It was observed that short-term SP supplementation led to a decrease in heart rate, an increase in stroke volume, and an improvement in oxygen pulse (VO2/HR) during low and moderate-intensity exercise under hypoxia. These changes were accompanied by an increase in the serum inorganic phosphate level by 8.7% (p < 0.05). No significant changes were observed in serum calcium levels. GE at a given workload did not change significantly after SP supplementation. These results indicated that SP promotes improvements in the efficiency of the cardiorespiratory system during exercise in a hypoxic environment. Thus, SP supplementation may be beneficial for endurance exercise in hypoxia.


Asunto(s)
Ciclismo/fisiología , Capacidad Cardiovascular/fisiología , Suplementos Dietéticos , Hipoxia/fisiopatología , Fosfatos/farmacología , Adulto , Estudios Cruzados , Método Doble Ciego , Prueba de Esfuerzo , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Hipoxia/terapia , Masculino , Consumo de Oxígeno/efectos de los fármacos , Fosfatos/sangre , Resistencia Física/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos
15.
Nutrients ; 13(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34684343

RESUMEN

Caffeine supplementation has shown to be an effective ergogenic aid enhancing athletic performance, although limited research within female populations exists. Therefore, the aim of the investigation was to assess the effect of pre-exercise caffeine supplementation on strength performance and muscular endurance in strength-trained females. In a double-blind, randomised, counterbalanced design, fourteen strength-trained females using hormonal contraception consumed either 3 or 6 mg·kg-1 BM of caffeine or placebo (PLA). Following supplementation, participants performed a one-repetition maximum (1RM) leg press and repetitions to failure (RF) at 60% of their 1RM. During the RF test, rating of perceived exertion (RPE) was recorded every five repetitions and total volume (TV) lifted was calculated. Repeated measures ANOVA revealed that RF (p = 0.010) and TV (p = 0.012) attained significance, with pairwise comparisons indicating a significant difference between 3 mg·kg-1 BM and placebo for RF (p = 0.014), with an effect size of 0.56, and for 6 mg·kg-1 BM (p = 0.036) compared to the placebo, with an effect size of 0.65. No further significance was observed for 1RM or for RPE, and no difference was observed between caffeine trials. Although no impact on lower body muscular strength was observed, doses of 3 and 6 mg·kg-1 BM of caffeine improved lower body muscular endurance in resistance-trained females, which may have a practical application for enhancing resistance training stimuli and improving competitive performance.


Asunto(s)
Cafeína/farmacología , Músculo Esquelético/fisiología , Resistencia Física/efectos de los fármacos , Esfuerzo Físico/fisiología , Entrenamiento de Fuerza , Adulto , Femenino , Humanos , Músculo Esquelético/efectos de los fármacos , Esfuerzo Físico/efectos de los fármacos , Adulto Joven
16.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R844-R857, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668436

RESUMEN

Available evidence indicates that elevated blood ketones are associated with improved hypoxic tolerance in rodents. From this perspective, we hypothesized that exogenous ketosis by oral intake of the ketone ester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KE) may induce beneficial physiological effects during prolonged exercise in acute hypoxia. As we recently demonstrated KE to deplete blood bicarbonate, which per se may alter the physiological response to hypoxia, we evaluated the effect of KE both in the presence and absence of bicarbonate intake (BIC). Fourteen highly trained male cyclists performed a simulated cycling race (RACE) consisting of 3-h intermittent cycling (IMT180') followed by a 15-min time-trial (TT15') and an all-out sprint at 175% of lactate threshold (SPRINT). During RACE, fraction of inspired oxygen ([Formula: see text]) was gradually decreased from 18.6% to 14.5%. Before and during RACE, participants received either 1) 75 g of ketone ester (KE), 2) 300 mg/kg body mass bicarbonate (BIC), 3) KE + BIC, or 4) a control drink in addition to 60 g of carbohydrates/h in a randomized, crossover design. KE counteracted the hypoxia-induced drop in blood ([Formula: see text]) and muscle oxygenation by ∼3%. In contrast, BIC decreased [Formula: see text] by ∼2% without impacting muscle oxygenation. Performance during TT15' and SPRINT were similar between all conditions. In conclusion, KE slightly elevated the degree of blood and muscle oxygenation during prolonged exercise in moderate hypoxia without impacting exercise performance. Our data warrant to further investigate the potential of exogenous ketosis to improve muscular and cerebral oxygenation status, and exercise tolerance in extreme hypoxia.


Asunto(s)
Bicarbonatos/administración & dosificación , Hidroxibutiratos/administración & dosificación , Hipoxia , Cuerpos Cetónicos/sangre , Cetosis/sangre , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Resistencia Física/efectos de los fármacos , Administración Oral , Adulto , Bicarbonatos/metabolismo , Ciclismo , Estudios Cruzados , Método Doble Ciego , Tolerancia al Ejercicio/efectos de los fármacos , Humanos , Hidroxibutiratos/metabolismo , Masculino , Músculo Esquelético/metabolismo , Factores de Tiempo , Adulto Joven
17.
Eur J Pharmacol ; 912: 174577, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34688636

RESUMEN

Short interspersed nuclear elements (SINEs) play a key role in regulating gene expression, and SINE RNAs are involved in age-related diseases. We investigated the anti-aging effects of a genetically engineered murine SINE B1 antisense RNA (B1as RNA) and explored its mechanism of action in naturally senescent BALB/c (≥14 months) and moderately senscent C57BL/6N (≥9 months) mice. After tail vein injection, B1as RNA was available in the blood of mice for approximately 30 min, persisted for approximately 2-4 h in most detected tissues and persisted approximately 48 h in lungs. We found that treatment with B1as RNA improved stamina and promoted hair re-growth in aged mice. Treatment with B1as RNA also partially rescued the increase in mitochondrial DNA copy number in liver and spleen tissues observed in aged and moderately senescent mice. Finally, treatment with B1as RNA increased the activities of superoxide dismutase and glutathione peroxidase in aged and moderately senescent mice, reduced these animals' malondialdehyde and reactive oxygen species levels, and modulated the expression of several aging-associated genes, including Sirtuin 1, p21, p16Ink4a, p15Ink4b and p19Arf, and anti-oxidant genes (Sesn1 and Sesn 2). These data suggest that B1as RNA inhibits the aging process by enhancing antioxidant activity, promoting the scavenging of free radicals, and modulating the expression of aging-associated genes. This is the first report describing the anti-aging activity of SINE antisense RNA, which may serve as an effective nucleic acid drug for the treatment of age-related diseases.


Asunto(s)
Envejecimiento/genética , Antioxidantes/farmacología , ARN sin Sentido/farmacología , Elementos de Nucleótido Esparcido Corto/genética , Envejecimiento/efectos de los fármacos , Animales , Antioxidantes/administración & dosificación , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/metabolismo , Glutatión Peroxidasa/metabolismo , Cabello/efectos de los fármacos , Inyecciones , Malondialdehído/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Resistencia Física/efectos de los fármacos , ARN/metabolismo , ARN sin Sentido/administración & dosificación , Superóxido Dismutasa/metabolismo , beta-Galactosidasa/metabolismo
18.
J Int Soc Sports Nutr ; 18(1): 63, 2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34565388

RESUMEN

BACKGROUND: Carbohydrate (CHO) and caffeine (CAF) mouth rinsing have been shown to enhance endurance and sprint performance. However, the effects of CHO and CAF mouth rinsing on muscular and cognitive performance in comparison between male and female athletes are less well-established. The aim of this study was to examine the effect of CHO and CAF rinsing on squat and bench press 1 repetition maximum (1-RM) strength, 3 sets of 40% of 1-RM muscular endurance and cognitive performance in both male and female athletes. METHODS: Thirteen male and fourteen female resistance-trained participants completed four testing sessions following the rinsing of 25 ml of i) 6% of CHO (1.5 g); ii) 2% CAF (500 mg), iii) combined CHO and CAF (CHOCAF) solutions or iv) water (PLA) for 10 s. Heart rate (HR), felt arousal (FA), ratings of perceived exertion (RPE) and glucose (GLU) were recorded throughout the test protocol. RESULTS: There were no significant differences in squat and bench press 1-RM, HR, RPE and GLU (p > 0.05) for males and females, respectively. FA was significantly increased with CAF (p = 0.04, p = 0.01) and CHOCAF (p = 0.03, p = 0.01) condition in both males and females, respectively. Squat endurance performance in the first set was significantly increased with CHOCAF condition compared to PLA in both males (p = 0.01) and females (p = 0.02). Bench press endurance was similar for all conditions in both genders (p > 0.05). Cognitive performance was significantly increased with CHOCAF compared to PLA in males (p = 0.03) and females (p = 0.02). CONCLUSION: Combined CHO and CAF mouth rinsing significantly improved lower body muscular endurance and cognitive performance in both males and females.


Asunto(s)
Rendimiento Atlético , Cafeína/administración & dosificación , Cognición/efectos de los fármacos , Carbohidratos de la Dieta/administración & dosificación , Antisépticos Bucales , Fuerza Muscular/efectos de los fármacos , Resistencia Física/efectos de los fármacos , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Factores Sexuales , Adulto Joven
19.
J Int Soc Sports Nutr ; 18(1): 60, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503541

RESUMEN

BACKGROUND: Numerous studies have demonstrated the efficacy of creatine supplementation for improvements in exercise performance. Few studies, however, have examined the effects of phosphocreatine supplementation on exercise performance. Furthermore, while polyphenols have antioxidant and anti-inflammatory properties, little is known regarding the influence of polyphenol supplementation on muscular strength, power, and endurance. Thus, the purpose of the present study was to compare the effects of 28 days of supplementation with phosphocreatine disodium salts plus blueberry extract (PCDSB), creatine monohydrate (CM), and placebo on measures of muscular strength, power, and endurance. METHODS: Thirty-three men were randomly assigned to consume either PCDSB, CM, or placebo for 28 days. Peak torque (PT), average power (AP), and percent decline for peak torque (PT%) and average power (AP%) were assessed from a fatigue test consisting of 50 maximal, unilateral, isokinetic leg extensions at 180°·s- 1 before and after the 28 days of supplementation. Individual responses were assessed to examine the proportion of subjects that exceeded a minimal important difference (MID). RESULTS: The results demonstrated significant (p < 0.05) improvements in PT for the PCDSB and CM groups from pre- (99.90 ± 22.47 N·m and 99.95 ± 22.50 N·m, respectively) to post-supplementation (119.22 ± 29.87 N·m and 111.97 ± 24.50 N·m, respectively), but no significant (p = 0.112) change for the placebo group. The PCDSB and CM groups also exhibited significant improvements in AP from pre- (140.18 ± 32.08 W and 143.42 ± 33.84 W, respectively) to post-supplementation (170.12 ± 42.68 W and 159.78 ± 31.20 W, respectively), but no significant (p = 0.279) change for the placebo group. A significantly (p < 0.05) greater proportion of subjects in the PCDSB group exceeded the MID for PT compared to the placebo group, but there were no significant (p > 0.05) differences in the proportion of subjects exceeding the MID between the CM and placebo groups or between the CM and PCDSB groups. CONCLUSIONS: These findings indicated that for the group mean responses, 28 days of supplementation with both PCDSB and CM resulted in increases in PT and AP. The PCDSB, however, may have an advantage over CM when compared to the placebo group for the proportion of individuals that respond favorably to supplementation with meaningful increases in muscular strength.


Asunto(s)
Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Fosfocreatina/farmacología , Resistencia Física/efectos de los fármacos , Extractos Vegetales/farmacología , Arándanos Azules (Planta)/química , Creatina , Suplementos Dietéticos , Método Doble Ciego , Humanos , Masculino , Torque , Adulto Joven
20.
Sci Rep ; 11(1): 19228, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584111

RESUMEN

The present study investigated the effects of acute melatonin administration on the biomarkers of energy substrates, GLUT4, and FAT/CD36 of skeletal muscle and its performance in rats subjected to exhaustive swimming exercise at an intensity corresponding to the maximal aerobic capacity (tlim). The incremental test was performed to individually determine the exercise intensity prescription and 48 h after, the animals received melatonin (10 mg·kg-1) or vehicles 30 min prior to tlim. Afterwards, the animals were euthanized 1 or 3 h after the exhaustion for blood and muscles storage. The experiment 1 found that melatonin increased the content of glycogen and GLUT4 in skeletal muscles of the animals that were euthanized 1 (p < 0.05; 22.33% and 41.87%) and 3 h (p < 0.05; 37.62% and 57.87%) after the last procedures. In experiment 2, melatonin enhanced the tlim (p = 0.01; 49.42%), the glycogen content (p < 0.05; 40.03%), GLUT4 and FAT/CD36 in exercised skeletal muscles (F = 26.83 and F = 25.28, p < 0.01). In summary, melatonin increased energy substrate availability prior to exercise, improved the exercise tolerance, and accelerated the recovery of muscle energy substrates after the tlim, possibly through GLUT4 and FAT/CD36.


Asunto(s)
Tolerancia al Ejercicio/efectos de los fármacos , Melatonina/administración & dosificación , Resistencia Física/efectos de los fármacos , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Antígenos CD36/análisis , Antígenos CD36/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Tolerancia al Ejercicio/fisiología , Transportador de Glucosa de Tipo 4/análisis , Transportador de Glucosa de Tipo 4/metabolismo , Masculino , Modelos Animales , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Resistencia Física/fisiología , Ratas , Natación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA